
(Presented at National Instruments User Sy]nposium, July 26-28, 1995, Austin, Texas)

VISUAL PROGRAMMING IMPROVES COMMLJNICAIIC)N AMC)NG THE
C U S T O M E R, DEvELOIJ};R, AND COMPU’I%R

by

Christopher Hartsough, M.S. and Ed Baroth, Ph.13.
Measurement Technology Center (MTC)

Jet Propulsion Laboratory,
California Institute of Technology

A B S T R A C T

This paper reports direct experience with commercial, widely used visual programming languages. In
the environment of test and measurement of flight cquipme]lt, visual programming currently provides
productivity improvements of from four to ten times compared to conventional text-based programming. The
most dramatic gains in productivity are attributed to the cornmu nication among the customer, developer, and
computer that are facilitated by the visual syntax of the tools. The customer understands enough of the visual
diagram to make suggestions and modifications in the forma] statement of the problem. Using these tools blurs
the requirements, design, and coding phases into a single activity, usually implemented interactively with the
customer and developer together at the computer. The a~lthors have not found a text-based environment where
these conditions hold. This paper discusses the expansion of visual languages and tools into more of the process
than is currently ‘standard practice.’ The improvements in productivity demonstrated from user-understandable
programming leads to proposing the expansion of visual lJrograml Iling into otlwr engineering disciplines.

lNTROIIuCTION

3 ‘he Measurement Technology Center (MTC) evaluates co] nrnercial test and measurement hardware and
software products that are then made available to experimenters at the Jet Propulsion Laboratory. The MTC
specifically configures, delivers and supports turn-key measurement systems including software, sensors, signal
conditioning, and data acquisition, analysis, display, simulation and control capabilities.],z

Visual programming tools, specifically LabVIEW and H]’ VEE, are frecluently used to configure these
systems. Visual programming tools that control off-the-shelf interface cards have been the most important
factor in productivity improvements of from four to ten times compared to conventional text-based

74 The gains in productivity are attributed to the communication among the customer, developer,programming.,
and computer that are facilitated by the visual syntax of the tools, thereby reducing time and cost of
configuration and modification.

Our evidence shows that these tools facilitate cornm[lnications because they provide a common
expression that can be read by our customers, the developer, and the computer. I’here are different details of
each syntax that facilitate this communication, but the details are unimportant: what is important is the
transformation of requirements from a statement to a d ynarnic COI lversation that results in system components as
a natural outcome of the process.

The visually based syntax is the key factor in the acceptance of visual programming by our customers.
Our experience is that the development paradigm of a ‘Requirements’ definition fo~lowed by an
implementation phase is obsolete in our test and measurement environment. The process now more closely
represents rapid applications development (ILAD)5, anti eliminates a separate implementation phase because,
frequently, when the requirements definition has been completed, so has the system. Traditionally, the

1

Requirements definition is part of the communications chain that ultimately ends with the developer coding at
the computer. Visual programming can eliminate the chain 01 communications between customer, developer, and
computer because coding usually is implemented interactively with the customer and developer together at the
computer as a single conversation.

Most readers have had similar experiences in quickly and successfully building data acquisition
systems using a visual programming language/environment. If your organization is like the MTC, you build such
systems with regularity and under schedule pressure. In contrast to suggesting improvements in the areas where
visual languages are currently most active and effective, or with general purpose programming language issues,
this paper focuses on the test /characterizat ion process. This paper discusses the expansion of visual languages
and tools into more of the process than is currently ‘standarcl practice.’

A context is needed before boldly going into areas where Lal)VIEW” has never gone before. In previous
papers,6,7 the authors have presented a model of conversation, language, and communication as the underlying
basis for the most dramatic productivity improvements that the M rC has achieved. We have found that the
visual diagram is a natural and easy representation that the users LU lderstand enough to make suggestions and
modifications in the formal statement of their problem. We have also found that in the visual environment,
in~pIementaticm (which includes design plus programming plus test) is fast enough for conversation to occur in
the language of the diagram. We have not found a text-based environment where these conditions hold. The
productivity improvement we’ve witnessed, resulting from progra]nming that is understandable to the user,
suggests the expansion of visual programming to other engineering disciplines.

CONTEXT FOR DEVELO1’MENT ,

Most people using a visual programming environment fall into one of the following groups:

● Engineers with a need to test something they’ve designed,

● Test engineers who are tasked to test something sormbody else designed, or

● An implementation specialist — developer (or perhaps a 3rd party) — supporting one of the
above.

In each of the above cases, there needs to be a ccmversatioll with the visual programming system that
facilitates communication. “Conversation” is the appropriate term: saying something in the visual language to
the visual programming system (computer), and the computer communicates with you. When the conversation is
successful, the program works correctly.

When a developer is supporting an engineer or user, achieving end-to-end communication gets a bit more
complex. There is another talker/listener in the conversation and a possible rub: what if the language used in
the conversation between the customer and the developer is different from the language used between the
developer and the computer? Anyone who has tried to fully comrnu nicate through a translator can answer that
question. Anyone who has acted as a translator can attest to how hard it is to cross the cultural barrier created
by two languages. l’rogramming in C or BASIC based on Englisl] requirements is a translation. When the
language of the conversation is the same for all parties, as it is for visual but not for text-based programming,
then the communication barrier is reduced. This is a real advantage that visual programming brings to the
development process. It is what enables a conversation-based paradigm.

*There really are other visual programming environrncnts, at least onc focused on test, On the basis of
on who is attending this conference the prevalent tool discussed will be LabVIEW, Chrr remarks, however, are
not LabVIEW specific.

2

When a developer and user sit together at the compute~, all three have a communication in a visual
development context and the language barriers are reduced. What occurs is a conversation between two groups
(customer to developer and developer to computer) who both nearly speak one language. While there are side
conversations in native tongue, the intent of the side conservation is to formulate a better expression in the joint
language, the computer language. On the basis of our experience, this process is completely different from a
linear translation from A through B to C. It is where the conversation among customer, developer, and computer
takes place in a visual language context that the highest productivity improvements have been achieved in
the MTC.

This increase in productivity with engineers and scientists is largely due to visual programming
specifically based on the data flow design (DFD) and flow-chartiTlg.8 These structural syntaxes are comfortable
to engineers and scientists, which are our customers and users. Most have limited programming experience with
either visual or text-based code. Most, if not all, understand data flow diagrams, so it becomes a natural mode
to use as the language of discussion. We have consistently found users with little or no experience in LabVIEW
or VEE could ‘understand’ the process, if not the details, of th(, program. By programming together at the
terminal, customers can follow the data flow diagrams enough to]nake suggestions or corrections in the flow of
the code. It is difficult to imagine a similar situation using text-l)ased code, w}lere someone with little or no
understanding of ‘C’ could correct a programmer’s syntax or flow. Actually, it is difficult to imagine anyone
‘watching’ someone else program using text-based code at all.

The problem with other visual tools in common use today (e.g., Visual Basic, Visual C, Visual ‘x’) is

that the program itself is text-based and not visual. While the output is certainly graphical and can be very
effective and visual, the development remains text-based and therefore is nc)[suitable for the conversation
paradigm. In the MTC there are those who can develop a program as fast in Visual ‘x’ as in ~,abVIEW when the
specifications are essentially complete as in a re-implementaticm of existing software. When the problem
involves requirements discovery, design, implementation or test, then the Visual ‘x’ languages cannot support
the human information transfer rates needed to sustain a commul Iication. The text-based forms, at least so far,
cannot be read or understood by the customer as they are being written; therefore the whole conversation
paradigm breaks down. This is what separates visual programmil[g environments such as LabVIEW from text-
based (including object-oriented) environments.

The productivity improvements available in conversation have not gone unnoticed by visual language
developers: notably, the development of application specific graphic programming tools.9 While this is not
precisely the same model we are advocating, the conversation element is, in our opinion, the key to the success.
In the cited work, the subject and object of the conversation is a [;raphical lan~uage itself, which is somewhat
more complex than the conversations in the MTC. Additional re~narks regarding visual programming studies
are given in the Appendix.

E XT EN DING THE P A R A D I G M

The MTC has already dernonstratedlo]l that LabVIEW call be successfully used in areas not originally
intended (e.g., telemetry, simulation, pure data analysis) and provide the same productivity improvements as
when used in ‘typical’ applications such as data acquisition, It is our belief that the productivity
improvements are mainly due to the conversation that occurs when the developer and user are programming
together at the computer. It seems likely that these productivity improvements can be extended to other
elements of the development process.

Making L,abVIEW or any visual tool better for current users certainly can’t hurt, but that’s not the
purpose of this paper. Making the tool accessible to a wider community is. If we can extend to a wider group of
participants the same increases in productivity and integration of activities that we have already provided to
the test and measurement community, the resulting productivity will be more than the sum of its parts. If we
take the communications model as a base, we can expand naturall~ to the next ring of communications partners.
Figure 1 shows one potential set of new conversation partners.

3

Manufacturing Engineer

Design Engineer
Metrologist

Mathematical Analyst

chnical Author
Process Flow Manager

Figure 1. Next level of conversation partners

As we look at each new possible member of the com]nunication group, wc notice that there are tools they
already use. It is very tempting to build a ‘bridge’ that allows commands in the extension tool to be issued from
the visual environment, For example, it is fairly straightforward to create a LabVIEW subVI that directly
interfaces to Hi-Q and passes text-strings that are Hi-Q commands. This class of bridge is helpful, but
demanding. The reason is language. You now have added anothtr language, in this example that of Hi-Q
commands, to a conversation that was already in English and LabVIEW. It is as if one is translating English to
French with a bit of precise Swahili thrown in as well. It is no wonder that these bridges aren’t wildly
popular. When a person can use this type of bridge effectively, the are often (justifiably) proud of their
accomplishment.

Often the use of the bridge and the additional language complexity is Iiot productive and it is more
effective to create an interface (e.g., a file or pipe) and do the next phase of the work in a new and separate
language context. This is not what we think the future should look like. Applications should not require a major
shift in the language of expression.

. . . In fact the great success of the Macintosh can bc attributed to a large degree to the
efforts of the early Apple “evangelists” to encourage applications cievelopers to use a common
design vocabulary. They facilitated this by publishing explicit guidelines]2, by providing tools
for all of the standard elements . . . and by working directly with developers. They convinced
the developers that they would gain more from promoting the popularity of the Mac platform
by making it seem easy to use through uniformity, r:ither than through having minor
differences (improvements) unique to their interface.13

In the Mac example, they limited the vocabulary to ‘look and feel.’ I’he authors feel that this
philosophy needs to be extended into the functional or semantic content as well. in the MTC environment, this
includes test requirements, design for testability, metrology, data acquisition and analysis, data presentation,
data archiving, and database, at a minimum. If LabVIEW (for example) l~ad icons that access IIi-Q
functionality from within LabVIEW, in LabVIEW syntax, one could take advantage of the power of Hi-Q
without having to learn its command structure. This kind of functionality would directly support the role of the
mathematical analyst. This is true for other elements in the development prcm?ss as well: LabVIEW could
allow all the capabilities and functionality associated with the roks shown in FiSurc 1 to be accessed without
having to learn a new tool and language for each one.

4

This idea of conversation among disciplines exists in tile commercial market, e.g., Spectragraphics
Corp. offers a ‘Team Solution’ package that allows X-Windows displays to be viewed simultaneously by team
members. In fact, they sub-title their team exchange product “Better I’roduct Conversations. ” In the
entertainment world, Emotion (company and product) offers a product that allows communication based on a
time code in a multi-media production. This product allows comments, alternatives, etc. to be exchanged by a
team working on a single product. What differentiates these products from what we’re suggesting is that these
products use the computer to facilitate the communication, not as a participant in the conversation.

It is felt that productivity improvement will be best served by having conversations with many
participants of differing responsibilities, including the computer. In these conversations, each party must have
full access to the domain specific functionality that they are there to contribute. To facilitate these
conversations, languages arc needed that don’t require the participants’ attention. They should not need to
worry about: “What syntax do we use here?” This argues AGAINST overly rich syntax(s) that do things the
‘best’ way in each case. It argues for consistent and powerful constructs that can be universally applied and
exploits intuition and simplicity. As more tools are integrated, the importance of, in popular terminology,
‘seamless integration’ becomes clear, It is at the seams that requires one to stop and solve yet another pesky
syntax problem. (The authors suspect that the consistency of kingllage constructs across application domains is
the essence of ‘seamless integration’ of applications,) To the extcmt that many parties can converse with the
computer about the problem smoothly and naturally, we can extend the conservation style and reap the
attendant productivity increases.

This point deserves elaboration. It is not just the formalis)ns of the language that need to be accounted
for, there also idiomatic issues. In this paper we are using the term idiom as it is synonymous with “accepted
phrase, “ “expression,” and “idiosyncrasy of speech, ” Idioms in th[, language arise and while the idioms are not
proscribed by the language, but are supported by it. Attempti]lg to do things in other ways do not work
conveniently. It is through these idioms that the efficiency of the language is fully utilized.

The development of idiomatic forms is a cultural pheno]nenon, both macro and micro. With natural
languages, idiomatic expression is the mechanism of language extension. In formal languages, the idioms of the
users’ culture are the source material for language extension. With formal languages there is often a tug-of-war
between practical cultures that want ‘to get something clone’ and academic cultures that want ‘to get it done
correctly.’ At a micro level, cultural idiom often takes the forJn of “Coding Standards” both formal and
informal. In FORTRAN shops, for example, it is often the idiom that format statements have labels over 1000
and/or all subroutines end with a “999 CONTINUE” follc)wed by the RETURN.

Idiom is also an expert phenomenon. As the user c)f a language becomes more expert, the structures used,
what I’etre]4 and others call Secondary Notation, become re~llhr and informative. What develops is an
idiomatic form of expression bqona’ flIr -formal defi?lifion of the Ianguugc that assists in carrying the
information content of the communication. While I’etre is primarily concerned with ‘cold reading’ of material
rather than the construction of the material, the observaticms about how experts read and write point to
training needs for developers.

What is most important about the idiomatic part of the language culture is that it simplifies
communication, the ‘what and why’ of common structures at a glan(e. Jargon, when it is not being used to exclude,
is another form of idiomatic and fast communication. In formal lansuages, we frequently use naming conventions
as jargon to easily predict the role/function of a language eleme~lt. Most of us would consider a sine function
called “aardvark” an error, although the computer couldn’t care less.

I’he discussion about idiom is going somewhere. l’he “where” is: NC)T ONLY must domain specific tools
be integrated into the formal language of a system, they]nust be integrated into the predominant idiom of that
language! If this is not done, it won’t be as bad as a Frenchman talking to a German; but it will be like upstate
Maine talking to back-country Alabama. If there becomes a seamless integration and a conversational model for
development, as we advocate, just what does the developer bring to the party?

5

P

ROLE OF THE DEVELOPER

Why do we need a developer? For several things, actually. Even if there are no seams, there may be
wrinkles, and the developer brings the iron. There are several useful, and one critical, things that the
developer brings:

Formal language skills.

l’he developer is the ‘author’ of the diagram, and th(customer is the ‘editor.’ From experience,
we have found that the customer can read and edit the diagram as it is being produced long
before the customer could realistically create a diagram (program) on their own.

Development and operations environment knowledge.

For the foreseeable future, there will be an operating system underlying the graphical
environment and its needs must be tended to. When the program is running, there are other
operating systems issues that must likewise be atten(ied.

Data integrity and/or database expertise.

Testing in the modern setting implies data logging and historical records in some form.
Responsibility for these areas is jointly held, AND developers should hold themselves specific
responsible for this area of the system.

Guiding the conversation for developn~ent.

The developer is in the best position to understand what has not been specified (the computer
knows too, it’s just a bit rude). The responsibility of managing the conversation for completeness
is the developers.

STRUCTURE

This is the most critical contribution of the developer toward the overall success of the project!

There are several arena’s that need structure. Clearly the p] ogram needs some structure. ‘Spaghetti’ is
a structure, or lack there of, that has earned a bad name in the software world. It deserves it. (A different form
of pasta design has a following in the UNIX world: Shell scripts.) If the problem is small, and the life of the
software is on the order of 30 days, just throwing it together AND tl~en thrc)wing it away (!) is not necessarily a
bad idea. If the problem has any size OR life span, then structure is needed. There is plenty of choice: (in no
particular order)

● HII’O (FIierarchical Input I’recess Output)

● Data Driven

● Event Driven

● Decision Tables

● Structured Design

● I>ata Flow

● Object-Oriented

● more; lots more . . .

6

It’s beyond the scope of this paper to delve into these, or any other, design structures and their methods.
Some of the above structuring are out of vogue just now. Some deserve to be. What we have found is that these
methods all have their limitations and strengths. What is inlportant here is that the system will get a
structure, and the key questions are: “Will the structure be designed or defaulted?” and “Will the structure
support or hinder the processes of system development, system operation, and system maintenance?” If the
developers don’t know what these techniques are, it will be hard for them to sc’lect the one(s) that is best. For
better or worse, it will be the developer that spans the full sf~ectrum of conversations and it will be the
developer that has the only opportunist y to supply system structu~ e.

What else needs structuring? The diagram itself. The stl ucture of the drawing itself is critical to the
conversation. The discussion of secondary notation (above and Petre14) addresses the importance of this
structure. The structuring of the conversation has been noted. What we are emphasizing is perhaps an element
of design, where ‘design’ is meant in its broader context than engineers are accustomed to applying to our own
work,

SU M M A R Y

The most important advantage the MTC has found in using visual programming is the support for
communications among the customer, developer, and hardware that visual pro~ramming enables. Without the
visual component, the support for communications is not present.

The visual component is the ability to graphically communicate the state of execution of a system to
the customer. This capability to see what the ‘code’ is doing directly is of inestimable value. The graphics
description of the system without the animation would be not much more than a CASk tool with a code
generator; with the animation, the boundaries between requirements, design, cleveloprnent, and test appear to
collapse. Seamless movement from one activity focus to another]nakes the development different in kind, not
degree. This is because we can sustain the cornmunicat ion among t] ~e customer, developer, and computer. If there
are substantial time lags in changing tools, (e. g., conventional debuggers or third party applications) the
conversational environment breaks down.

Having additional capability (data analysis, visualization, database, etc.) in the same iconic format
extends the language and increases the communication. This ex~,ands the possibilities into other engineering
disciplines. Access to other tools is, of course, better than nothing; but if the language used to control the third
party tool is different from the host language, the advantage is severely diminished. It would be as if you took
your car in for repair and had to describe engine problems in English, suspension in French, breaking in German,
and so on. It’s better than not getting your car repaired, but far fro]n ideal.

Given where we are, where we generally train pec)ple in the formal language skills primarily, and
given where we need to be, where developers are pivotal rnember~ of the entire process, we need education. We
need to provide education in thinking processes in addition to specific skills. This is a path less traveled but not
uncharted. We need to educate ourselves in structuring, expression and conversation. As suppliers, we need to
provide tools that promote expression and conversation across technical disciplines. This path leads to
increased productivity across technical disciplines and an overall improvement of the process through
redefining the user base.

ACKNOWLEDGMENTS

The research described in this paper was carried out k,y the
Institute of Technology, under a contract with the National Aeronautics

Jet Propulsion Laboratory,
and Space Administration.

California

1

REFERENCES

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

E. C. Baroth, D. J. Clark, and R. W. Losey, “Acquisitiorr, Analysis, Control, and Visualization of Data
Using Personal Computers and a Graphical-Based I’rogramrning Language,” Conference Proceedings of
American Society of Engineering Edwators (ASEE), Toledo, C)hio, June 21-25, 1992, pp. 1447-1453.
E. C. Baroth, D. J. Clark, and R. W. 1,osey, “An Adaptive Structure Data Acquisition System using a
Graphica l -Based Programming Language , ” Corr~erence Proceedings of Fourth A l A A / A i r
Force/NA SA/OAl Symposium on Ml(lfidisciplirrnry Arralysis and Optimization, Cleve land , Ohio ,
September 21-23, 1992,
G. Wells and E. C. Baroth, “Telemetry Monitoring and Display using LabVIEW,” Con~erence Proceedings
of National htsfrutnenfs User Symposium, Austin, Texas, March 28-30, 1993.
L>. Brceman, “Jet Propulsion Lab Aids in Space Craft Project,” Scientific Ccm~puting and Automation,
November, 1993, pp. 26-28.
E. Yourdon, Decline and Fall of the American Programmer, Yourdon P~ess, I’rentice Hall Inc., Englewood
Cliffs, 1992.
E. C. Baroth and C. Hartsough, “Experience Report: Visual I’rogramming in the Real World,” Visual
Object Oriented Progrnv~min~, edited by M. M. Burnett, A. C;old berg & T. C;. l.ewis, Manning Publications,
Prentice Hall, 1995, pp. 21-42.
E. C. Baroth and C. Hartsough, “Visual I’rogramming as a Means of Communication in the Measurement
System Development Process,” SciTech Journal, Vol. 5, No. 5, pp. 17-20.
J. Kodosky, J. MacCrisken, and G. Rymar, “Visual I’rogrammins Using St ruct u red Data Flow,” I’roceedings
of the 1991 IEEE Workshop on Visual Languages, Kobe, Japan, October 8-11, 1991, pp. 3,4-39.
A. Repcnning, “Agentsheets: A Medium for Creating Domain-Oriented Visual Languages,” Computer
(IEEE), March, 1995, pp. 17-25.
G. Wells and E. C. Baroth, “Using Visual Programming to Simulate, Test, and Display a Telemetry
Stream,” MacSciTech’s SEAM ’95 Conference, San Francisco, California, January 8-9, 1995.
F. Rai=.o and J. McGregor, “Using A Visual Language to Process Space Shuttle Telemetry Data,” American
Society of Engineering Educators (ASEE), Anaheim, California, June 19-23, 1995.
Apple Computer,)fumrm Itlterjiice Gllidclines: The Ap#e Dwkfop lnfcrjiice, Addison-Wesley, Reading,
Mass., 1987.
T. Winograd, ‘R-em I’rogramming Environments to Environm(mts for Designing,f’ Communications of the
ACM, June 1995, VO1. 38, No. 6, pp. 71.
M. l’etre, “Why Looking Isn’t Always Seeing,” Conm~unicatiol~s of the ACM, June 1995, Vol. 38, No. 6, pp.
33-44.
T. R. G. Green, M. Petre, and R. K. E. Bellamy, “Comprehensibility of Visual and Textual Programs: A
Test of Superlativism Against the ‘Match-Misn~atch’ Conjecture,” Fourth Workshop on Empirical Studies
of Programmers, New Brunswick, New Jersey, December 7-9, 1991, pp. 121-146.
T. G. Moher, L>. C. Mak, B. ~lumenthal, and L,. M. Levent}lal, “Con~paring the Comprehensibility of
Textual and Graphical I’rograms: The Case of Petri Nets,” Fifth Workshop on Empirical Studies of
Programmers, Palo Alto, California, December, 1993.
R. K. Pandey and M. M. Burnett, “Is It Easier to Write Matrix Manipulation I’rograms Visually or
Textually? An Imperical Study,” Oregon State University, Del]artment of Computer Science, 93-60-08.

8

API’ENDIX - RE MA RK S R E G A R D I NG V15UAL PROGRAMMING STUDIE5

There have been a few studies comparing visual with o{her types of programming, and those that do
exist have focused cm aspects that do not seem to correspond with our usc of visual programming. The study by
Green et al.ls compared readability of textual and graphical programming (LabVIEW). Their clear overall
result was that graphical programs took longer to understand than textual ones. The study by Moher et al.lb
essentially duplicated the study by Green et al. but compared petri-net representations with textual program
representations. They duplicated some of the earlier results, but did find areas where the petri-net
representation was more well suited, albeit with reservations. Additional studies14 tend to confirm the
previous work.

The cited studies have focused on experienced users of visual or textual code. No study measured the
time to create or modify the programs. It is in these areas, that of user (not programmer) experience and time to
create and modify programs, that we find advantages in visual over &XtLIFIl programming in our real world. In
addition, these studies used only static visual representations, ~’hereas in real world systems, customers and
developers get to interact with the program while trying to understand it. Most importantly, none of these
studies considers the conversation aspect available using visual p] ogramrning.

The study by Pandcy and Burnett]7 did compare time, ease and errors in constructing code using visual
and text-based languages. The programs chosen were on the lev[’1 of ‘homework’ type tasks, certainly not real
world problems, but even at that level they did find evidence tliat matrix ancl vector manipulation programs
were more easily constructed and had fewer errors using visual programming. ,

Using visual programming at this last stage of the coding process, however, removes much of the
advantages we’ve seen. Once specifications are determined, it sinlply becomes a race to see who can type faster
or who has access to more or better libraries of code or icons. The real benefit we find in using visual
programming is the flexibility in the design process, before requirements ha~’e been determined. The user-
programrner-computer communication is substantially improved due to the speed at which modifications can be
made because of the conversation allowed by the visual syntax.

None of the existing studies have addressed the key iss~le in this paper, i.e., ability of users, because
they can ‘read’ the visual code, to make suggestions and corrections in the program as it is being written. None
have dealt with the ability of visual vs. text-based programming to solve real world problems, i.e., determine
specifications, create, modify code and user interfaces as well as train inexperienced users to both operate and
modify systems. Studies need to be done which allow creativity in constructing, testing and modifying models
using visual and textual programming.

9

